Energia essencial

No último dia 20 de outubro teve início mais um período no qual, a partir de um decreto federal, as pessoas que vivem nas regiões Sul, Sudeste e Centro-oeste do Brasil tiveram que adiantar seus relógios em uma hora. É o horário de verão, há tempos instituído no Brasil com o objetivo de se aproveitar melhor os períodos de luminosidade solar. Começa todos os anos a partir do terceiro final de semana de outubro e vigora até o terceiro final de semana de fevereiro.

A ideia de fazer a mudança nos relógios é que nessa época os dias são mais longos. Para os estados do Norte e Nordeste a medida não se aplica, pois, como estão próximos da linha do Equador, não há diferenças consideráveis do período de luminosidade ao longo do ano.

É impossível gerar energia sem que parte dela seja devolvida ao ambiente de forma não útil

Com o adiantamento dos relógios, levantamos uma hora mais cedo (quando o dia já está claro) e também dormimos uma hora antes, diminuindo o consumo de energia elétrica. As estimativas são de que a medida leve a uma economia da ordem de 0,5% ao longo do período de vigência do horário.

Uma economia de 0,5% parece pequena, mas a energia elétrica (assim como as demais formas de energia) é um insumo essencial – e caro – em nossa sociedade. Dependemos dela o tempo todo, e sua produção e distribuição são grandes desafios para o século 21, principalmente se levarmos em conta que a geração de energia tem um custo que vai além do financeiro. O desafio é gerar energia com um mínimo de impactos ambientais. Mas, como veremos, é impossível gerar energia sem que parte dela seja devolvida ao ambiente de forma não útil.

Conservação da energia

Um dos mais importantes fundamentos da física é o chamado princípio da conservação da energia, que estabelece que a energia nunca é criada ou destruída, mas sempre conservada em todos os processos físicos.

Esse princípio está presente em diferentes teorias físicas, mas aparece de forma marcante na chamada Primeira Lei da Termodinâmica, segundo a qual a variação da energia interna de um corpo depende do trabalho realizado pelo corpo e da quantidade de calor dele extraída.

Por exemplo, em um automóvel, quando o combustível é injetado no motor, uma faísca produz combustão, que é um processo de queima controlada. Esse processo libera grande quantidade de calor e, como consequência, aumenta a pressão na câmara interna, que empurra o pistão, colocando-o em movimento.

No processo de combustão, a energia química acumulada nas ligações entre átomos e moléculas do combustível se transforma em calor

A partir daí, de modo simplificado, dizemos que os movimentos são transferidos para os eixos do automóvel, permitindo que ele ande, e também para um gerador elétrico, que alimenta uma bateria. Esta permite então os acionamentos elétricos existentes no automóvel. Mas, nesse processo, há geração de dióxido e monóxido de carbono, que são lançados na atmosfera, contribuindo com a poluição do planeta.

No processo de combustão, a energia química acumulada nas ligações entre átomos e moléculas do combustível se transforma em calor (que também é uma forma de energia). Essa energia química foi acumulada nos processos que levaram à formação das moléculas.

No caso da gasolina e do óleo diesel, essa energia vem do petróleo, formado a partir da decomposição de seres que compõem o plâncton e outras matérias orgânicas, como restos de vegetais e algas, que ficaram enterrados em rochas sedimentares sob forte calor e pressão. Tais seres, por sua vez, acumularam energia a partir do processo de fotossíntese, no qual as plantas usam a energia do Sol para converter gás carbônico, água e minerais em compostos orgânicos e oxigênio gasoso.

Plataforma de petróleo
Plataforma marinha de produção de petróleo. Ao contrário do biocombustível, produzido a partir de plantas que tiram carbono da atmosfera, o petróleo, quando queimado, emite o carbono que estava aprisionado no solo. (foto: Flickr/ tsuda – CC BY-SA 2.0)

No caso do etanol utilizado nos automóveis, extraído da cana-de-açúcar ou milho, ou dos óleos vegetais, como o biodiesel, também aproveitamos a energia solar que os vegetais acumularam a partir da fotossíntese.

A principal diferença na utilização de combustíveis fósseis, como o petróleo, é que nesse caso o carbono emitido estava anteriormente acumulado nas profundezas do solo. Já as plantas utilizadas para gerar biocombustíveis capturaram o carbono da atmosfera (no processo de fotossíntese). O ciclo que ocorre nesse último caso praticamente não deixa resíduos na atmosfera (como o gás carbônico) que contribuem com o aquecimento global.

Entropia

Uma importante descoberta da física é que não se pode transformar a energia com 100% de eficiência. Como no exemplo do automóvel, é impossível transformar uma forma de energia em outra que gere sempre trabalho ou movimento. Parte dela sempre será transformada em calor que não pode ser aproveitado. Percebemos facilmente o aumento da temperatura de um motor durante o seu funcionamento.

Esse fato é conhecido como Segunda Lei da Termodinâmica e está relacionado com o conceito da entropia, uma grandeza física associada ao grau de organização de um sistema (e, como consequência, à quantidade de informação necessária para caracterizá-lo). Dessa forma, quanto maior a entropia, mais informações são necessárias para descrevermos um sistema (veja a coluna ‘O caos e a ordem’).

Na própria transmissão da eletricidade pelos cabos da usina até nossas casas, a energia se perde na forma de calor devido à resistência elétrica dos fios

No caso do automóvel, grande parte do calor gerado no processo de combustão para pôr o veículo em funcionamento se perde no meio ambiente e não pode ser reaproveitada.

Nas usinas hidrelétricas, em que a eletricidade é gerada pelo movimento das turbinas produzido pela água que desce a represa, parte dessa energia se perde no processo de atrito entre a água e a turbina. Na própria transmissão da eletricidade pelos cabos da usina até nossas casas, a energia se perde na forma de calor devido à resistência elétrica dos fios.

Enfim, a energia não é criada nem destruída, mas transformada, e parte dela se modifica em energia que não pode ser utilizada. Assim, dada a crescente demanda de energia, é necessário buscar sempre processos nos quais esses efeitos possam ser minimizados, embora saibamos que é impossível transformar energia com 100% de eficiência. A energia é essencial para nossas vidas, devendo, portanto, o seu uso ser bem empregado e valorizado, buscando-se sempre evitar desperdícios.

Adilson de Oliveira
Departamento de Física
Universidade Federal de São Carlos