Com só uma regra simples, denominada ‘condição de neutralidade’, um joguinho fácil, divertido e instrutivo – para o qual você só precisa de uma folha de papel e quatro canetinhas de cores diferentes – vai te revelar uma surpreendente propriedade sobre tabuleiros coloridos
            
            
    Um problema que pode ser simulado com elásticos e preguinhos sobre uma tábua de madeira não é só interessante, instrutivo e divertido, mas também tem papel de destaque na história da matemática, pois sua resolução tem algo dos roteiros de filmes românticos
            
            
    Duas irmãs e duas amigas delas. Todas as quatro excelentes tenistas. Elas decidem disputar, entre elas, um torneio do tipo ‘perdeu, tá fora’. Qual a probabilidade de as duas irmãs se enfrentarem? Soa complicado. Mas a matemática está aí para simplificar as coisas
            
            
    Uma intoxicação atinge amigos em um acampamento. No hospital, o médico de plantão enfrenta problema sério: como dar a cada paciente o maior número possível de doses de uma vacina (sem exceder o limite seguro), quando os três tipos de imunizante vieram sem rótulos?
Claro, Noel e seu ‘simpático’ ajudante, Gunther, apareceram. Desta vez, abriram presentes, comeram bolo e usaram – para variar – um truque ‘desleal’: apresentaram ao dono da casa um problema fácil para, depois, complicar as coisas. Mas, no fim, foi divertido
            
            
    Seguimos com o joguinho popular cujo desafio é encontrar rapidamente figuras em comum entre duas cartas. Neste mês, exploraremos questões intrigantes e ainda desafiadoras para a matemática: dado certo número de figuras, quantas cartas terá nosso jogo?
            
            
    Um joguinho popular – cujo desafio é encontrar rapidamente figuras em comum entre duas cartas – está baseado em conceitos ‘ocultos’ de uma área da matemática: a geometria projetiva finita, que lida basicamente com pontos e linhas que se cruzam