Entre os grandes avanços atuais na área da química medicinal, um dos destaques é o desenvolvimento de dispositivos extremamente diminutos, mas altamente sofisticados, voltados à liberação controlada de fármacos para o tratamento do câncer e de outras doenças infecciosas.
A construção desses dispositivos – ditos nanomoleculares, por sua dimensão na casa do bilionésimo de metro – tem como objetivo fazer com que os fármacos atinjam alvos específicos – à semelhança dos drones –, matando, por exemplo, células cancerosas e poupando as sadias, diminuindo, assim, os efeitos colaterais adversos de medicamentos que são eficazes, mas tóxicos. Esses nanodispositivos também protegem os fármacos de degradações causadas por enzimas, aumentando, dessa forma, o tempo dessas drogas no organismo.
Essas máquinas moleculares podem, por exemplo, ser nanoválvulas, dotadas de reservatórios que podem ser ‘carregados’ com um fármaco. Um componente móvel – que se abre e se fecha como uma porta – libera seu conteúdo ou interrompe seu funcionamento, quando comandos químicos são aplicados (figura acima).
Recentemente, pesquisadores brasileiros da Universidade Federal Fluminense e da Universidade de São Paulo, em Ribeirão Preto (SP), construíram nanoválvulas à base do mesmo elemento químico que compõe os microprocessadores e chips: o silício – mais especificamente, sílica (dióxido de silício). Esses dispositivos – dotados de poros regulares de 3 a 6 nanômetros cada e ‘grande’ área superficial – não são tóxicos nem reagem com outras substâncias presentes no organismo.
Na superfície desses dispositivos, foram introduzidas as chamadas funcionalizações químicas – no caso, fazendo o papel de porta para cada poro. Os componentes das nanoválvulas foram planejados para que essas portas se abram na presença de oxigênio molecular em meio ácido, tendo em vista o ambiente ácido de vários tumores.
Depois de carregarem os reservatórios das nanoválvulas com um fármaco (cloridrato de doxorubicina) usado no tratamento de certos cânceres, os pesquisadores brasileiros investigaram a eficiência desses nanodispositivos. Um desses experimentos mostrou que o fármaco foi liberado com sucesso no interior de células de câncer de pele de camundongos, fazendo com que a ação dessa droga fosse potencializada.
Esses resultados – publicados no periódico Microporous and Mesoporous Materials (v. 206, pp. 226-233, 2015) por Gleiciani Silveira, Roberto da Silva, Lilian Franco, Maria Vargas e Célia Ronconi – mostraram que as nanoválvulas são, de fato, sistemas de liberação de fármacos promissores cujo estudo poderá levar a avanços no tratamento do câncer.
Angelo Cunha Pinto
Instituto de Química,
Universidade Federal do Rio de Janeiro