A luz talvez seja um dos entes mais fundamentais no universo. Ela pode ser observada em grande faixa de comprimentos de ondas, de centenas de metros (ondas de rádio) até escalas tão pequenas quanto o tamanho de um núcleo atômico (10-12 m). Mas nossos olhos percebem apenas uma diminuta porção do espectro eletromagnético, a faixa denominada visível, cujo comprimento de onda varia de 400 a 750 nanômetros (um nanômetro é um bilionésimo de um metro).
A natureza da luz foi discutida desde os primórdios da humanidade, até que, no início da segunda metade do século 19, o físico escocês James Clerk Maxwell (1831-1879) demonstrou que a luz era uma manifestação de campos elétricos e magnéticos que se propagavam como ondas por todo o espaço.
O físico de origem alemã Albert Einstein (1879-1955) ‒ que, curiosamente, nasceu meses antes da morte de Maxwell ‒ sempre teve fascínio pela luz. Relatou em cartas que, quando tinha 16 anos e morava em Aarau (Suíça), ao ler sobre as ideias de Maxwell, imaginou como seria se ‘cavalgássemos’ um raio de luz.
Sua conclusão sobre esse ‘experimento imaginário’ levou-o à relatividade restrita, teoria publicada em 1905 na qual Einstein mudou para sempre nossas concepções sobre espaço e tempo. A partir daí, essas duas grandezas deixavam de ser absolutas ‒ como defendia a física newtoniana ‒ e passavam a ser relativas, ou seja, dependiam de cada observador. Mais: o tempo poderia dilatar, e o espaço se encurtar, fenômenos que foram, desde então, comprovados com precisão em experimentos.
Mas o que nos interessa aqui é outro dos cinco artigos excepcionais publicados por Einstein em 1905. Nele, apresentou o que classificou como sua “ideia mais revolucionária”, ao propor algo radical sobre a natureza da luz. Com o título ‘Sobre um ponto de vista heurístico a respeito da produção e transformação da luz’, o trabalho introduzia a ideia do quantum de luz, no qual a luz é composta por pequenos ‘pacotes’ de energia.
Posto de modo simples, Einstein fez a seguinte analogia: embora a matéria nos pareça contínua, ela é feita de átomos, e algo semelhante se passaria com a luz, que poderia ser também composta de partículas.
Nesse mesmo artigo ‒ e mais uma vez motivado pelo conceito de quantum de energia, apresentado em 1900 pelo físico alemão Max Planck (1858-1947) e segundo o qual a energia é gerada e absorvida não de forma contínua, mas em diminutos ‘pacotes’ ‒, Einstein propôs calcular a variação do ‘grau desordem’ (entropia) de um gás ‘especial’: formado por partículas de luz, em vez de átomos. Nesses cálculos, obteve uma fórmula relacionando energia e frequência ‒ posteriormente, identificada como a que Planck havia obtido.
Einstein aplicou esse resultado para explicar o efeito fotoelétrico, fenômeno (então, controverso) observado décadas antes pelo físico alemão Heinrich Hertz (1857-1894) e no qual a luz arranca elétrons da superfície dos metais. Mais tarde, essa fórmula de Einstein também foi confirmada. Foi a ideia do quantum de luz ‒ posteriormente, batizado fóton ‒ que deu a Einstein o prêmio Nobel de Física de 1921.
A ideia do fóton foi de fundamental importância para o estabelecimento da teoria quântica, que mostrou que as partículas também se comportam ora como ondas, ora como corpúsculos (matéria), levando ao conceito de dualidade onda-partícula.
A percepção iluminada de Einstein sobre a luz se mostrou essencial para termos uma nova visão do universo.
Adilson de Oliveira
Departamento de Física,
Universidade Federal de São Carlos (SP)
O que há em comum entre estrelas, árvores, pássaros e humanos? Muito, na verdade. A estrutura atômica de todos os seres animados está intimamente relacionada com ‘sementes’ formadas em um processo nuclear que ocorre no interior desses corpos celestes
As mudanças climáticas são, sem dúvida, o maior desafio que a humanidade já enfrentou. A solução para essa ‘desordem planetária’ é complexa. A física, por meio do poderoso e amplo conceito de entropia, pode nos ajudar a entender a gravidade do cenário
No início do século passado, percebeu-se que a física até então conhecida não podia explicar o mundo subatômico. Essa inconsistência levou a uma teoria revolucionária e prodigiosa: a mecânica quântica, base dos atuais dispositivos eletrônicos de nosso cotidiano
Tudo começou em 1900, com uma proposta revolucionária: na natureza, a energia só é gerada e absorvida na forma de diminutos ‘pacotes’. A partir dessa ideia, outras teorias e experimentos, também revolucionários, fizeram do século passado um marco na história da física
Uma das maiores aventuras do conhecimento humano começou na Antiguidade: as coisas são feitas de átomos, ‘indivisíveis’. Cerca de 2,5 mil anos depois, essa entidade foi fragmentada. E aí começou uma nova e fascinante jornada – com participação decisiva de um cientista brasileiro
Desde os filósofos da Antiguidade, nosso conhecimento sobre as leis da natureza evoluiu dramaticamente. Hoje, temos modelos precisos para explicar a evolução e estrutura do universo – e até mesmo a vida. Mas o roteiro desse enredo cósmico segue incompleto
Nossa espécie desenvolveu uma forma única de entender o mundo: a ciência. E esta, ao longo de séculos, tem gerado inúmeros e inegáveis exemplos de bem-estar e riqueza para as nações. Mas, nesse cenário de avanços, residem paradoxos de difícil compreensão
Teorias da física oferecem precisão quase absoluta na previsão de vários fenômenos. Esse é o caso do papel da relatividade geral no sistema de localização por GPS. Mas elas falham para os chamados sistemas complexos, como eleições, futebol e inflação. Por quê?
Os prêmios Nobel de Física e Química deste ano contemplaram trabalhos que investigaram a matéria em sua mais diminuta escala: a atômica e subatômica. E esses resultados têm aplicações práticas que vão da área eletrônica até o tratamento do câncer
Cookie | Duração | Descrição |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |